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This Letter introduces a trigger-controlled Geiger-mode avalanche photodiode (GM-APD). A hierarchical look-
back-upon tree recurrence method is given to predict the performance of trigger-controlled GM-APDs under
different trigger-count upper limits. In addition, the normalized detection probability is defined to evaluate
the detection performance of trigger-controlled GM-APDs in typical weak optical signal detection (impulse noise
and continuous noise situations). Theoretical analyses show that the trigger-controlled GM-APD improves the
detection performance of GM-APDs in weak optical signal detection via the optimization of the trigger-count
upper limit, compared with single-trigger and multi-trigger GM-APDs.
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Geiger-mode avalanche photodiodes (GM-APDs) possess
high sensitivity and high gain to detect a single photon[1].
However, the traditional gated GM-APD with a long dead
time can only trigger once in one gate; hence, it is called
the single-trigger GM-APD. Once the detector is trig-
gered, the signal cannot be triggered during the rest of
the gate. Thus, the detection probability of signals
arriving afterward will be reduced, especially in weak
optical signal detection[2]. Typical weak optical signal de-
tection scenarios can generally be divided into impulse
noise and continuous noise situations.
In impulse noise situations, the signal arrives after a

high noise pulse, which can be found using optical time-
domain reflectometry[3] and partially obscured target laser
ranging[4]. In continuous noise situations, the weak signal
is obscured by the continuous strong noise, which can be
found in faithful swapping experiments[5] and diffuse
reflection laser ranging (DRLR)[6].
Johnson et al.[7] first proposed the multi-trigger GM-

APD to improve the detection performance for partially
obscured target detection in laser ranging, in which a
GM-APDwith a short dead time can be triggered multiple
times in one gate as long as the dead time is over. Further-
more, Oh et al.[3,8] experimentally verified the effectiveness
of the multi-trigger GM-APD for partially obscured target
detection, compared with the single-trigger GM-APD.
However, their investigations were limited to partially ob-
scured target laser ranging. Moreover, the multi-trigger
GM-APD was not well designed for weak optical signal
detection, since the trigger count of the multi-trigger
GM-APD only takes the maximum during the gate.
In this Letter, the trigger-controlled GM-APD is intro-

duced to improve the GM-APD performance in weak
optical signal detection. First, the hierarchical look-
back-upon tree recurrence (H-LTR) method is given to

predict the performance of trigger-controlled GM-APDs
under different trigger-count upper limits. Based on the
theoretical performance prediction, the normalized detec-
tion probability is defined to evaluate the detection
performance in impulse noise and continuous noise
situations. Theoretical analyses show that the trigger-
controlled GM-APD improves the detection performance
of GM-APDs in weak optical signal detection via the
optimization of the trigger-count upper limit, making a
solid foundation for a hardware implementation.

For GM-APDs, each trigger depends on the generation
of primary electrons (PEs) and that the avalanche is
followed in sequence[9]. PEs are generated mainly from
the light absorbed by imperfect quantum efficiency as
well as the dark noise inside[10] the GM-APD. The
absorbed light includes echo light reflected from the
target and background light. In general, the echo light
is assumed to be a function of time, while the background
light is not. Thus, the optical power of the echo light
and background light are defined as PeðtÞ and Pb, respec-
tively. In addition, the count rate of the dark noise is
defined as Rd , and the probability that a PE will
trigger an avalanche is incorporated into the imperfect
quantum efficiency, ηqe. Then, the input rate, ψðtÞ, is
written as

ψðtÞ ¼ ηqeðPeðtÞ þ PbÞ∕hνþ Rd ; (1)

where h is Planck’s constant, v is the laser’s optical
frequency, and the product hv is the photon energy.

However, once the avalanche occurs, a period of dead
time, Td , follows, in which the GM-APD is blocked and
unavailable for re-triggering. The GM-APD will not be
triggered again unless the dead time has ended and the
gating time, Tg, has not. Therefore, the dead time and
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the gating time together decide the maximum trigger
count, Mmax, of the GM-APD:

Mmax ¼ ⌈
Tg

Td
⌉: (2)

Regardless of the value ofMmax, the trigger count of the
single-trigger GM-APD is limited to one during the gate.
Alternatively, the multi-trigger GM-APD increases the
trigger count to Mmax to improve the detection perfor-
mance. However, neither the single-trigger GM-APD
nor the multi-trigger GM-APD can take arbitrary trigger
counts between one and the maximum. In this Letter, we
introduce the concept of a trigger-controlled GM-APD
where the upper limit of the trigger count, denoted as
M lim, can be controlled to vary from one to Mmax. An
example of the trigger-controlled GM-APD’s operating
scheme is shown in Fig. 1.
As shown in Fig. 1, if the trigger count reaches its upper

limit during the gate, the trigger-controlled GM-APD will
close and all subsequent trigger pulses will be ignored.
Meanwhile, if the trigger count is less than M lim during
the gate, all trigger-pulse arrival times will be recorded
and the trigger-controlled GM-APD will close at the
end of the gate. In addition, the single-trigger GM-APD
can only trigger once in the gate and the multi-trigger
GM-APD will remained armed during the whole gate.
In this Letter, we focus on the theoretical performance pre-
diction and analysis of the trigger-controlled GM-APD,
compared with the single-trigger GM-APD and the
multi-trigger GM-APD.
The count rate is generally used to reflect the perfor-

mance of the detector. In practice, the time-dependent dis-
tribution of the GM-APD output rate is obtained via the
accumulation of detected trigger-pulse arrival times
during the gate. In the performance prediction theory,
the distribution could be predicted based on a priori
knowledge of the detector and the system without any
practical testing. The LTR method currently possesses
a better calculation performance than other performance
prediction methods for multi-trigger GM-APDs among all
ranges of dead time and input diversity[11]. However, it can
only predict the output rate of multi-trigger GM-APDs.
Hereafter, the H-LTR method is used to predict the out-
put rate under different upper limits of the trigger count.

We define ξpðt;MÞ as the partial output rate for trigger
countM , and ξðt;M limÞ as the output rate when the upper
limit is M lim. The output rate is obtained by summing the
partial output rates for trigger counts less than M lim.
Thus, ξðt;M limÞ is obtained by

ξðt;M limÞ ¼
XM lim

M¼1

ξpðt;MÞ;

× 0 ≤ t ≤ Tg; 1 ≤ M ≤ M lim ≤ Mmax: (3)

In the discrete-time condition, the gate time, Tg, is dis-
cretized into N bins with the same time period Tb, where
N is equal to ceilðTg∕TbÞ and ceil() is the ceiling function.
Meanwhile, the dead time, Td , is discretized into d bins,
where d is equal to ceilðTd∕TbÞ. Then, the mean number
of PEs generated from ψðtÞ at the ith bin, Ki , is given by

Ki ¼
Z

iTb

ði−1ÞTb

ψðtÞdt: (4)

Since the number of PEs is generally assumed to follow
the Poisson distribution, the probability that at least one
PE is generated at the ith bin is given by[9,12]

PPEðiÞ ¼ 1− expð−KiÞ: (5)

We define Paði;MÞ as the probability of an avalanche at
the ith time interval for trigger countM . Because the GM-
APDavalanche only occurs once, nomatter howmanyPEs
are generated at the ith bin, the probability of an avalanche
is equal to the average number of avalanches at the ith time
bin. Then, ξpðt;MÞ can be obtained by

ξpðt;MÞ ¼ Paði;MÞ∕Tb;

× ði − 1ÞTb ≤ t ≤ iTb; 1 ≤ M ≤ Mmax: (6)

Define states ‘1’, ‘0’, and ‘X’ as the states where the
GM-APD succeeds in avalanching because of the PE gen-
eration, fails in avalanching because no PEs exist, and is
blocked during the dead time, respectively. In order to
calculate Paði;MÞ for different M , the look-back-upon
rules[11] in the LTR method should be modified to consider
the trigger count M as follows:
a) The initial state is ‘1’ at the ith bin;
b) the prior states of ‘0’ or ‘1’ are ‘0’ and ‘X’;
c) the prior state of ‘X’ is ‘1’ or ‘X’, depending on the

location of the current state ‘X’ in the sequence

of
1←X � � �X←X|����������{z����������}

d .
d) The number of trigger counts, M , increases by one
once state ‘1’ occurs,
where rule d) is newly added to introduceM . According to
the modified look-back-upon rules, the hierarchical look-
back-upon tree structure, defined as LTi , is given. Accord-
ing to the rule a), LT1 is defined as the single state ‘1’ of
the ith bin. According to rules b) and c), LT1 could ex-
pand to LTi after i times look-back-upon. At the jth
look-back-upon (1 < j ≤ i), possible states of the
i − j þ 1th bin will be added next to the end of LTj−1,
and then LTj−1 expands to LTj . According to rule
d), newly added state ‘1’ will located in the lower level,
where a lower level means a bigger M . An example of

Fig. 1. Example of the trigger-controlled GM-APD’s operating
scheme.
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the deduction of LT5 when the avalanche occurs at the
fifth bin and d ¼ 2 is shown in Fig. 2.
States connected from the start to the end in the

direction opposite the time sequence, denoted as a state
connection, represent a possible case in a real situation.
State connections ending with state ‘X’ are invalid be-
cause state ‘X’ cannot occur at the beginning of the gate
time. Meanwhile, state connections ending with state ‘1’
and state ‘0’ are valid connections. Therefore, Paði;MÞ
can be calculated by summing the probabilities of all valid
connections ending in theMth level of LTi . Because d − 1
states that ‘X’ always follows once state ‘1’ occurs in a
state connection, the probability of a state connection
is the product of the probabilities of all states ‘1’ and
‘0’ in the state connection.
According to the definitions of states ‘1’ and ‘0’, the

probability of state ‘1’ occurring at the ith bin is
PPEðiÞ, and the probability of state ‘0’ occurring at the
ith bin is 1− PPEðiÞ. Define P1

aðj;MÞ and P0
aðj;MÞ as

the corresponding probabilities of valid connections in
LTj ending with state ‘1’ and state ‘0’ for the trigger count
M , respectively. When LTj−1 expands to LTj , the state ‘0’
at the end of LTj is added next to the state ‘0’ or ‘1’ at the
end of LTj−1 in the same level. Therefore, P0

aðj;MÞ is
obtained from P0

aðj − 1;MÞ and P1
aðj − 1;MÞ as Eq. (7):

8><
>:

P0
aðj;MÞ¼0 j¼1;1≤M ≤Mmax

P0
aðj;MÞ¼ð1−PPEði− jþ1ÞÞ·
ðP0

aðj−1;MÞþP1
aðj−1;MÞÞ 1< j≤ i;1≤M ≤Mmax

; ð7Þ

where P0
að1;MÞ, 1 ≤ M ≤ Mmax, is equal to zero because

LT1 is a single state ‘1’ of the ith bin.
The sequence, 1←X � � �X←X, whose state ‘1’ is located

at the end of LTj in the lower level, is added next to the
state ‘0’ or ‘1’ at the end of LTj−d in the higher level.
Therefore, P1

aðj;MÞ is obtained from P0
aðj − d;M − 1Þ

and P1
aðj − d;M − 1Þ as Eq. (8). Because only the single

state ‘1’ of LT 1 will exist in the first d LTs (LT1 − LTd),
the initial value of P1

aðj;MÞ is also shown in Eq. (8):

8>>>>>>>>>><
>>>>>>>>>>:

P1
aðj;MÞ¼PPEðjÞ j¼1;M¼1

P1
aðj;MÞ¼0 j¼1;1<M≤Mmax

P1
aðj;MÞ¼0 1<j≤i;M¼1

P1
aðj;MÞ¼0 1<j≤d;1<M≤Mmax

P1
aðj;MÞ¼PPEði−jþ1Þ·

ðP0
aðj−d;M−1ÞþP1

aðj−d;M−1ÞÞ d<j≤i;1<M≤Mmax

: ð8Þ

Then, P1
aði;MÞ and P0

aði;MÞ can be obtained according to
Eqs. (7) and (8), and Paði;MÞ is given by

Paði;MÞ ¼ P1
aði;MÞ þ P0

aði;MÞ: (9)

Thus, ξðt;M limÞ can be further obtained according to
Eqs. (3) and (6). Based on the calculation of ξðt;M limÞ,
the normalized signal detection probability under differ-
ent M lim, defined as PdðM limÞ, is further proposed to
evaluate the detection performance of the trigger-
controlled GM-APD. PdðM limÞ is given by

PdðM limÞ ¼
RT aeþTp

Tae
ξðt;M limÞdtRTg

0 ξðt;M limÞdt
; (10)

where Tp is the width of the echo light and Tae is the
arrival time of the echo light. A bigger Pd means more sig-
nal counts from the echo light are detected; these photos
can be easily extracted from the fake counts. Meanwhile, a
smaller M lim means fewer counts (less data) are detected
and the data processing cost decreases. Therefore, a bigger
Pd is expected to be obtained with a smaller M lim.

For the impulse noise and continuous noise situations,
input rates of noises have different forms. In the impulse
noise situation, the signal arrives after a high noise pulse.
The arrival time of the impulse noise is defined as Tai, and
the width of the impulse noise is assumed to be the same as
Tp. Then, the signal-to-noise ratio (SNR) in the impulse
noise situation can be defined as

SNRi ¼
RTaiþTp

T ai
ψðtÞdtRT aeþTp

Tae
ψðtÞdt

: (11)

In the continuous noise situation, the weak echo signal
is obscured by a continuously strong noise. The strong
noise is assumed to be distributed uniformly within the
gate. Then, the SNR in the continuous noise situation
can be defined as

SNRc ¼
RTaeþTp

Tae
ψðtÞdtRTg

0 ψðtÞdt − RTaeþTp
Tae

ψðtÞdt
. (12)

In theoretical analyses, for the sake of simplicity, the
arrival time of the echo light, Tae, is assumed to be cen-
tered at the middle of the gate, and the arrival time of
the impulse noise, Tai, is 100 ns earlier. The echo light
and the impulse noise are assumed to be rectangular where
Tp is equal to 10 ns. Moreover, the dead time is 100 ns, the
gating time is 1 μs, and the number of time bins is 1000.

Fig. 2. Deduction of LT5 when i ¼ 5 and d ¼ 2.

COL 14(4), 042801(2016) CHINESE OPTICS LETTERS April 10, 2016

042801-3



Assume the echo light is at the single-photon level. Con-
sequently, the total number of PEs generated from the
echo light during the gate is assumed to be one on average.
According to Eq. (10), PdðM limÞ under different SNRi

assumptions in the impulse noise situation is shown in
Fig. 3(a), and PdðM limÞ under different SNRc assumptions
in the continuous noise situation is shown in Fig. 3(b).
As shown in Fig. 3(a), the normalized detection

probability, Pd , increases when M lim increases, while Pd

remains almost unchanged when M lim is greater than
two. On the one hand, the maximum Pd of the trigger-
controlled GM-APD is bigger than the single-trigger
GM-APD (M lim ¼ 1). On the other hand, the detection
performance of the trigger-controlled GM-APD is equal
to that of the multi-trigger GM-APD (M lim ¼ Mmax),
whereas bigger trigger counts only bring a bigger data-
processing cost to the entire system. Therefore, to obtain
the best detection performance, the trigger-count upper
limit of the trigger-controlled GM-APD should be opti-
mized to the first two triggers (M lim ¼ 2). Moreover,
the changing features of PdðM limÞ under different SNRi

assumptions are similar.
As shown in Fig. 3(b), Pd decreases when SNRc de-

creases from 1:1 to 1:8. For a high SNRc, Pd reaches
the maximum when the trigger count is only one. How-
ever, for a small SNRc, the peaks of the curves move to
the right, and Pd reaches the maximum at bigger trigger
counts. That is to say, the maximum Pd of the trigger-
controlled GM-APD is bigger than the Pd of the single-
trigger GM-APD (M lim ¼ 1) for a low SNRc. Meanwhile,
the maximum Pd of the trigger-controlled GM-APD with

fewer trigger counts is always bigger than the Pd of the
multi-trigger GM-APD (M lim ¼ Mmax).

Therefore, optimizing the trigger-count upper limit of
the trigger-controlled GM-APD is a feasible way to obtain
the best detection performance with less data, compared
with single-trigger and multi-trigger GM-APDs in the im-
pulse noise and the continuous noise situations, especially
when the SNRc is low.

To have an explicit understanding of the benefits, a sim-
ple simulation of a DRLR system using the trigger-
controlled GM-APD in the continuous noise situation is
given by Monte Carlo method. Here, we focus on the op-
erating scheme of the trigger-controlled GM-APD, where
complicated factors, such as atmosphere turbulence, are
ignored. The time of flight (TOF) of the signals is recorded
only when their trigger-count numbers are less than M lim.
Then, the range residuals[13] under different M lim are cal-
culated based on the TOF. The range residual of the tar-
get is assumed to have a linear distribution. The repetition
rate of the laser is 10 Hz and the SNRc is 1∶8. Other
parameters and assumptions are equal to that of the con-
tinuous noise situation in the theoretical analyses. The
range residuals under different M lim after 60 s of observa-
tion of the DRLR simulation system are shown in Fig. 4.

In Fig. 4(a), which is the case of the single-trigger GM-
APD, the trace of the target is hard to be detected. In
Fig. 4(b), the trace of the target is just enough to be dis-
tinguished when M lim is equal to 2. In Fig. 4(c), the trace
of the target becomes very clear when M lim is equal to 4.
In Fig. 4(d), the trace of the target is almost as clear as
Fig. 4(c), while the fake counts caused by the noise
increase, since more trigger counts will be recorded.
Additionally, Fig. 4(d) corresponds to the case of the
multi-trigger GM-APD. Thus, through the optimization
of the upper limit of trigger counts, trigger-controlled
GM-APDs can achieve a better detection performance
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Fig. 3. (a) Pd (M lim) under different SNRi assumptions and
(b) Pd (M lim) under different SNRc assumptions.
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with less data, compared with single-trigger GM-APDs
and multi-trigger GM-APDs.
In conclusion, a trigger-controlled GM-APD is intro-

duced. First, the H-LTRmethod is used to predict the per-
formance of trigger-controlled GM-APDs under different
trigger-count upper limits. Based on the H-LTR method,
the normalized detection probability is defined to evaluate
the detection performance in two typical weak optical
signal situations. Theoretical analyses under reasonable
assumptions and simplifications prove that through the
optimization of the trigger-count upper limit, trigger-
controlled GM-APDs can obtain the best detection perfor-
mance with less data, compared with single-trigger
GM-APDs and multi-trigger GM-APDs in impulse noise
and continuous noise situations. Finally, the simulation
results of the DRLR system using a trigger-controlled
GM-APD agrees with the theoretical analysis for the
continuous noise situation.

References
1. P. Zhou, C. Liao, Z. Wei, C. Li, and S. Yuan, Chin. Opt. Lett. 9,

010402 (2011).

2. P. Zhao, Y. Zhang, W. P. Qian, and Y. Xuan, Sci. China Tech. Sci.
58, 493 (2015).

3. L. Lv, Y. Song, F. Zhu, and X. Zhang, Chin. Opt. Lett. 10, 040604
(2012).

4. B. Wang, Y. Wang, L. Kong, and A. Wang, Chin. Opt. Lett. 6, 868
(2008).

5. N. Sangouard, B. Sanguinetti, N. Curtz, N. Gisin, R. Thew, and H.
Zbinden, Phys. Rev. Lett. 106, 120403 (2011).

6. F. Yang, X. Zhang, Y. He, andW. Chen, Chin. Opt. Lett. 12, 082801
(2014).

7. S. Johnson, P. Gatt, and T. Nichols, Proc. SPIE 5086, 359
(2003).

8. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, B. W. Kim, and D. J.
Park, Rev. Sci. Instrum. 81, 033109 (2010).

9. D. G. Fouche, Appl. Phys. 42, 5388 (2003).
10. M. A. Karami, A. Amiri-Sani, andM. H. Ghormishi, Chin. Opt. Lett.

12, 012501 (2014).
11. P. Zhao, Y. Zhang, Y. M. Hua, and W. P. Qian, Opt. Lett. 40, 3822

(2015).
12. M. S. Oh, H. J. Kong, and T. H. Kim, Curr. Appl. Phys. 10, 1041

(2010).
13. G. Kirchner, F. Koidl, F. Friederich, I. Buske, V. Uwe, and R.

Wolfgang, Adv. Space Res. 51, 21 (2013).

COL 14(4), 042801(2016) CHINESE OPTICS LETTERS April 10, 2016

042801-5


